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Invented Processes in Sclution to Arithmetical Problems

James M. Moser and Thomas P. Carpenter
University of Wisconsin-Madison
This papér focuses upon problem-solving behaviors of primary age
children on one-step verbal or "story" problems involving the operations of
addition and subtraction. 1In previous writings (Carpenter & Moser, 1982)
we have presented a detailed semantic analysis of various verbal problem
tvpes. Some might argue that routine verbal problems are not ‘'‘problems"
in the true sense of the word, but are merely exercises that can be answered
in a simple fashion by children. There is a degree of truth in this asser-
tion and, for many children, these verbal problems are not problems at all.
They know how to analyze and solve them quickly and accurately. However,
many primary age children do not have the formal arithmetic skills and
procedures to algorithmically solve these problems. For these children,
verbal problems do indeed constitute a well defined class of problems for

Greeno (1980) speaks to this point when he writes "...significant processes
such as understanding, planning and orgenizing activity by setting subgoals
are very much present in a great many activities that students learn to
accomplishk routinely. These routine activities, therefore, ought to be
countad for what they are, namely, as perfectly legitimate acts of problem
solving." (p. 13)

When children are presented a simple word problem for which they have
not learned the necessary algorithms, they often are able to derive a

solution on their own. This is basically the process of invention des-

i

|

which clearly identifiable problem-solving behaviors have been observed. 1
|

cribed by Resnick (1978). She talks of invention as a process whereby
|
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persons acquire new mathematical knowledge by constructing for themselves
new -rginizations of concepts and new procedures for performing mathematical
operations. In essence, it comes to youngsters figuring things out for
themselves as opposed to simple application of formally taught facts and
skills. That children exhibit inventive behavior when no instruction has
taken place has been documented by Croen and Resnick (1977) and by ourselves
(Carpenter, 1980; Moser, 1980). 1In this paver, we examine the procedures
that children ‘nvent to solve word problems that normally would be solved
using an additicn or subtraction algorithm. We include in this analysis

all behavior that has not been formally taught as part of the curriculum.
Some of the "invented behavior" may well have resulted from their learning
from others, either in school or at home. Ffurther, inventive behavior. will
be attributed to children who may use learned behavior, but in a situation
different in context from the one in which the behavior was learned. In
other Qords, we do not wish to exclude consideration of learned behavior
and the possible effects of instruction.

Although this work is not to be considered as a report of an empirical
study, we do need to provide certain background information about the three
year longitudinal study that provides the data for our conclusions. This
includes a reasonably detailed description of the instruction received by
the subjects since we feel this instruction may well have influenced the
inventive behavior of the children.

The major section of the paper examines the inventive behavior of
primary age childr2n. The discussion is limited to three major categories
of behavior observed as the children attempted to solve verbal addition and
subtraction problems involving two-digit numbers. The first category cf

behavior includes solutions that involve knowledge of place value, but are
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different from the standard algorithms. The second category involves use
of algorithmic behavior, both with and without use of paper-and-pencil.
Included here are correct algorithms used by children before they receive
any formal instruction in addition or subtraction algorithms and "buggy"
algorithms (Brown & Van Lehni 1982; Resnick, 1982) for subtraction after
the addition algorithm has been taught. The third considers processes used
on a problem that can easily be solved by’using the subtraction algorithm
but whose semantic wording is so strongly oriented towards addition and
additive strategies such as forward counting that children tended to resist
use of the subtraction algorithm.

Background

The Longitudinal Study

In September 1978, the Mathematics Work Group of the Wisconsin Center
for Education Research began a three-year longitudinal study of about 100
first-grade children. The sample was takzn from two elementary schools
in the Madison, Wisconsin area, one public and one parochial; both serve
middle to upper-middle class neighborhoods. Data collected included class-
room observations interested mainly in allocated and engaged time and certain
téacher behavjors, paper-and-pencil achievement monitoring tasks aimed
at assessment of mastery of selected arithmetic objectives, and pupil per-

formance on a set of verbally administered "

story" problems in addition and
subtraction. The last set of data, which are the basis for this paper,
were collected by means of individually administeggd interviews given in
September, January, and May of each of .the first rhree school years, except

for May 1981 during third grade. Our interest in this paper is centered

upon only the four interviews (January 1980, May 1980, September 1980, and

pX
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| Table 3
Representative Problem Types

|

Task 1. Joining (Addition) Sheiley had 12 coins. Her
brother gave her 15 more
coins. How many coins Jdid
Shelly have altogether! .

Task 2. Separating (Subtraction) Jim had 35 pears. He gave
’ 21 to Mary. How many pears
did Jim have left?

Task 3. Part-Part-Whole There re 78 beads on the
(Subtraction) neck! e. 16 are red and
the rest arc white. How

many white beads are on

the necklace?

(Addition) - also has 18 oranges. liow
many pieces of fruit dees
Allen have altogether?

Task 4. Pant-Part-Whole Allen has 11 apples, He
Task 5. Comparison (Subtraction) Tom has 16 crayons. His
friend Sally has 29 crayons.
How many more crayons docs
Sally have than Tom?
Task 6. Jolning Missing Addend Jane has 23 markefs. How
(Subtraction) many more markers does she
have to put with them to
have 37 markers altogzather?

R




January 1981) and only upon those conditions in which the problems contained
two-digit numbers.

Six selected verbal problems were administered at each interview.
Fach of the six was presented in the order as listed in Table 1 under a
variety of conditions determined by number size and the availability of
problem-solving aids such as manipulative materials or paper-and-pencil.
For each, a set of about 60 cubes, divided equally between two colors, and
paper and pencil was provided. Under each condition at a particular admini-
stration, the wording of the problems was altered to prevent immediate
recognition of problem type by the subjects while still attempting to maintain
the semantic characteristics of the problems.

Two sets of six problems each were read to the children. The first
set involved number pairs for which no regrouping was required for a compu-
tational solution while the second used numbers for which regrouping was
required. The actual number trifles used are shown in Table 2. For the
six 'problems, these six number triples were assigned under a Latin-square
design resulting in six sets of six problems each.

Table 2

Two-digit number triples used in Wisconsin longitudinal study

No Regrouping Regrouping
12, 15, 17 12, 19, 31 .
12, 156, 28 13, 18, 31
11, 18, 29 14, 18, 32
13, 16, 29 ) 16, 17, 33
14, 21, 35 15, 19, 34 . ~
14, 23, 37 17, 19, 36

~I




Children's responses to the individual problems were recorded by the inter-
viewer and were coded into four categories: type of model; correctness;
process employed; and, if appropriate, type of error.

Instruction in Addition and Subtraction

Both schools in the study used the Developing Mathematical Processes

(DMP) program (Romberg, Harvey, Moser, & Montgomery, 1974) as the basis

for mathematics instruction. DMP has a strong emphasis upon problem solving
and as a result the children had been exposed to the various problem types
used in the interviews. For the longitudinal study, special units were
developed for instruction in the computational algorithms for addition and
subtraction. These units are briefly characterized here. Of particular
interest is the timing of instruction in relation to the administration of
the four problem-solving interviews. The first unit was taught in second
grade following the January 1980 interview. The unit begins with childreh
counting forward and backward from any number by twos, threes, fives, and
tens with care given when the counting bridges from one decade to anotheg.
Numbe:r patterns and rounding are also taught. Basic problem types including
Join, Separate, Combine, and Compare are used. Sugges?ed solution methods
include couﬁting by tens and ones as well as use of manipulative materials,
especizlly small counting étické already grouped together in tens and bound
by a rubber band. At first, horizontal number sentences are written to .
represent problem situations, but the transition is quickly made to the
vertical form of riting with the first efforts assisted by the use of

' and "ones". All numbers utilized are two-digit

a grid labeled ws«_. "tens'
nxﬁbérs, and no problems require regrouping. Both addition and subtraction

receive equal emphasis.




The second unit was tavght several weeks following the first unit and

~ preceding the administration of the second-interview in May 1980, In this
unit, the children are asked to solve addition problems involving regrouping.
The formal algoxithmic process is motixated by the use of the bundled count-
ing sticks used in the preceding unit and also in an earlier unit devoted

to place value. At first, children solveé by counting the sticks ope—by—one,
. then by using sticks grouped in bundles, regrouping as needed. Symbolic

recording of the work is done. This learning activity is greatly similar

to the mapping technique as described by Resnick (1982). Rather quickly, the

cﬂildren are urged to move to the formal symbolic algorithm, with the tran-
sition once again easéd by the place value grid described above. The
children are reminded to check reasonableness of answers by estimation and
by rounding addends to the nearest ten and then mentally adding the rounded
numbers. Some subtraction is reviewed, but only with numbers requiring no
regrébping.

The third unit was taught in September 1980 when the children were third
graders. The third problem—solving_interview was given prior to the begin-
ning of this unit. This third unit is similar to the second unit described
above, except that the emphasis is upon subtraction and the algorithm for
regrouping. OUne feature of this unit is the checking of addition and sub-
traction problems by uéing the inverse operation. In earlier arithmetic
units involving "basic fact" addition and subtraction, analysis of verbal
problems to decide which operation to use was centered around explicit
discussion of the part-part-whole relstionship. Appeal to this same part-

part-whole analysis is made to make the checking by the inverse operation

reasonable.

&
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The final unit was taught duriﬁg late Fall 1980, preceding the admini-
stration of the last problem-solving interview in January 1981. This fourth
unit is essentially a review of instruction on the computational 'algorithms.
The expectation was that by completion of this unit, children would be able

* N
to correctly aﬁply the two-digit algorithms to a variety of verbal
addition and subtraction problems. Not all types of verbal problems were
covered, some of the more difficult comparison problems having been delayed.

Solving problems in all areas of mathematics--geometry, measurement,
and arithmetic--is the emphasis of the curriculum used by the subjects of
the longitudinal spudy. In particular, verbal problems in addition and
subtraction are uséd early in the program and serve as a motivating rationale
for learning stand?rd coﬁputational procedures such as memorization of basic
facts and algorithms. This technique would appear to be strikingly differ-
ent from other more traditional instrdctional programs in which abstract
symbolic arithmetic is taught prior to application to problems, generally
in a rather context-free setting. Thus, when confronted with a problem
situation for which a“standard procedure was not available, the children
in this study were encouraged to seek a solution using whatever means
they had, rather than give up. Consequently, the effect of instruction
cannot be ignored as we consider the inveﬁted processes that children use

in their attempt to solve arithmetic problems.

- Inventive Behavior of Primary Age Children

[n earlier writings (Carpenter, 1980; Moser, 1980) we presented evi-
dence of inventivg:behavior by children solving verbal addition and subtrac-
tion problems contaitin- one-digit addends. 1In this section, we examine

invented strategies for problems involving two-digit addends. In some cases,

-

~a
(m




the invented strategies reported here are variations of those observed with
the. smaller number problems while in other instances, they are unique to
two—-digit problems.

The extension of counting strategies to two-digit problems provide
one example of invention. Children used a variety of counting strategies
to solve one-digit problems. Fuson (1982) documents some of the keeping-
track mechanisms used by youﬁger children, many of which we also observed
during administration of the one-digit problems. With sucﬁ smaller num-
pers, keening track can usually bé effected mentally ;r by using some
st' set of one's ten fingers. However, with larger two-digit numbers, keeping
track can involve using the fingers on at least one hand more than once
or some complicated mental operations. These‘keeping—track mechanisms
provide one éxample of a kind of invention, since they were not formally
taught.

One second-grade student used cubes as a tracking device. The problem
was a Separate problem (Problem 2 from Table 1) with the numbers 23 and 37
(37 - 23 =[]). This child elected to Count Back, beginning with "37,
36; . . " After several numbers, he seemed to realize that he would have
a difficult time keeping track of all 23 words in the sequence. After
several moments of silsnce, he constructed a set of 23 cubes. He:then
recommenced his downward count, removing one cube from the set for each
word spoken. When the set was exhausted, he triumphantly looked up and
pronounced the correct answer.

Non-Standard Solutions

The Counting strategies that children use for one-digit problems are

tedious for two-digit problems and provide a great deal of opportunity for

i
.
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counting errors. Since most children had no formal insiruction in addition
or subtraction algorithms at ghe time of the first interview, they were
forced to either rely on the time consuming counting stategies or invent
alternative procedures. Many children used‘their knowledge of place value
together with their understanding of counting strategies or knowledge of

. 7 one-digit numbeF facts to arrive at uniqu? solutions. Here are some

examples of these strategies.

|
i) For interview task #6 (Join/Subtraction) involving the given .
numbers 15 and 28: '"15, 25, 26, 27, 28. The answer is 13."
Counting up from the given addend 15 to the given sum 28 wés faci-
litated by one quick count of 10 (15 to 25). i
ii) For interview task #3 (Combination, missing part) involving the ]
n.mbers 31 and 19: "I think of 31 as 30 and 19 as 20, so the answer
is 11." Even though an error was made, this strategy involves
knowledge of place value and basic facts (3 - 2).
iii) For interview task #3 involving the numbers 32 and 18: "32 take
away 10 is 22. Twenty-two take away 8 is 24!" This example
involves breaking 18 into 10 and 8 together wigh an incorrect

application of the subtraction algorithm.

The incidence of observed usage of this type of alternative procedures is

listed in Table 3.

Table 3

Percentage of Place-Value Procedures

Interview ) Range* _
1 6 - 13%
2 1 - 8%
3 5 - 13%
4 3 ~ 8%

*Ranges of values over the two-digit problems in each interview

12
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When counting was involved as part of these strategies, beth upward-

and downward counting was used on each subtraction problem. The cheoice of
upws?d or downward counzing was not based-on problem structure as it was
in the smaller no-ber pioblem interviews. While the frequency of use o!
these stratepies is not pvervhelming, 1t 1s by no means trivial either.

- S

A agbstuntial number of children did use this tvpe of strategy as a con- S
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of 3 method to solve problems that tock inte accweunt aspe: ts ot

vlace vilue and other numerical relatfonships. ':

¢ ntinuing a pattern of behavior that we ohserved in the earlisr phases
< the lonpitudinal studw, those children gha did use thi ae&prai type of . e
stratecy were lective in that use. That is to gay, thew did not use thi- =

sirategy aniversallwy over all problems tvpee and all problem condirions.

elanll
For example, some children were abkle to use a atandard algoriths succcsse
N

fuilv with subiracrtion problems for which regrouping was not required

3 B ‘ /
hat then switched to alternative strategy when“confronted with problems

f I

~ntaininy nushers refquiring regrouping.  But even then, alternative strategpy

was not used for ail subtraction problems within 4 single dnterview, There

i< ¢ ivsuiticients aunber of inctdences of thi- behavier to enable us t:;f *
L3
fmaiate the factors related te this zelecrive bhrehavior,

sse of alyorithms {ncreaseyg rer Lime

with ~a oy adeaaces paralleling the 2 iming

e

instry tton tn algerithnis
Sehavier 1Moser, 149HL). Yet, the incidence of alparithmic use prior .
sastruetfen and the emetfzencs ~! "hugev” alperithms during {astructien

sugeests another cccurence of {nventive rehiavior. In tuls paper, use of

yocerithms < taken 1. mean hehavior, efther writren (and easily ol -—rvable)
e -
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or menﬁgx (a's veported by subjects upon questioning by tLe in€%rviewer),
that taWes into account the plaée value of each digit in a two-digit number

tt and then determines answers for the one's place and the ten's ace sepa-
. € . pla P

f}atély. In identifying algorithmic behavior, we did not differentiate

whether gperations were done in reverse order (tens before ones) or the
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method by which thglgasﬁc flact for each place was determined. If there pas
- }
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ur,fbuégy" algorithm. Table 4 presents selected data on the Gse gf algorXifhms-

on three p%o?leh tasks that require regrouping. The actual wording of
» ‘I -
these tasks is gdven in Table 1.
Table 4 N

“ Use of Algorithm¥ for
Two-Digit Problems Requiring Regrouping

1 - -

Problem - - Interwiew Problem Algorithm "Buggy"
I@pe Correct Used Used Correctly Algorithm
Join Additien 21 62 25 21 1
2 69 69 53 7
3 75 60 45 5 ¢
‘ 4 92 92 86 t 3 ,
Senparate -1 45 14 i 3 8
2 23 58 2 49
" 3 33 40 3 34 ¢
i M 75 88 : 69 18
Join’ o
“Hosing Addend 1. 4 10 2 7
s 2 39 35 3 21
i’k 3 47 2% 3 18
- M 70 » 54 40 5

e m s mm g — — e = = —— e —




-

13

4

Note the percentage of .algorithmic use in Interview 1 which took-

place prior to any formal school instruction in the use of algorithms.
Slightly higher percehtages were observed for the non-regrouping problems
jn terms of use while much higher percentages in te}ms of correctness were
seega,paxxicularly for subtracticu. It is impossible to tell how much of
this behavior was truiy invented by the children and how much was due to
outside—of—schosl influence such as parental direction.

Thére are striking differences between the use of algorithms for addi-
tion‘and subtraction. Before .any instruction, about 20 percent of the children
were able to use algorithmic behavior to solve gwo-digit addition problems
that required regrouping., - However, even after instruction in regrouping
fgr 9ddition, only 3 bé%cént could construct an appropriate subtraction
algoruyhm. In fact,‘instruction on addition tended to encourage the use
of a buggy algorithm that ignored regrouping.

The data from the last three interviews reveals further interesting
résults. Between Interview 1 and Interview 2, there was direct instruc-
tion on the regrouping addition algorithm. Use of the addition alég%ithm
jumps sharply followed by a slight decline over the summer. The large
jump from the third to fourth ingerview for addition appears to represent
a consolidation of learning some of which is due to imstruction in subtrac-
tion and additional ;2view in addition.

An interesting result is tbe large increase in the '‘buggy' SmallerFrom-
Larger (Brown & Van Lehr, 1982) subtraction algorirhm at Interview 2.
Apparently the instruction on the addition algorithm has causé; many child-

ren to extrapolate its procedures to subtraction. According to’Brown andy

AN
Van Lehn's Repair Theory, generation of a buggy algorithm can only\bccur

3
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if there is some sort of algorithm already in existence but that some
perturbation in its correct use takes pl;ce, the faulty repair of which
results in the bug. Most children make a very superficial extension of the
addition algorithm to subtraction, ignoring the regrouping involved in the
process. The use of buggy algorithms for subtraction Qas much higher than
was the case for addition. 1In fact, before children had instruction in
addition, very few invented buggy addition algorithms.

Why more children donft invent the correct subtraction regrouping
algorithm rather than the incorrect buggy one is not clear. It is clear,

though, that once the correct algorithm is taught directly (between Inter-

view 3 and Interview &), most children are successful in its use. A direct

N

corollary to the increased use of the buggy subtraction algorithm at
Interview 2 is tﬁe pronounced drop in percentage of correct responses for
the problems to which the buggy algorithm has replaced counting solution
procedures.

Solutions to Join Problems

Children's performance on the Join, Missing Addend problem deserves
special mention. Although this problem is solvable by subtraction of the
two given ?Fmbers in the problem, the semantic structure tended to keep many
children from using the subtraction algorithm. On Fhe administration of
the smaller number versions of this problem in the éther phase of the
longitudinal study, alm;st all children used an additive strategy. This

/the subtraction algorithm,

carried over into the two-digit problems. Use of
either the bi_gy one prior to formal instruction or the correct one subse-

quent to instruction, was much higher on the other three subtraction

[ ¥
-
.
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proble%s (Table 4). The reason for this may be seen in the instruction
associated with subtraction. The rationale for the standard algorithm for
subtraction 1s based strictly upon a subtractive or '"take-away'" notion.

For the other three subtraction problems used in the interviews, this takej
away interpretation is not inconsistent. However, foF a large percentage

of the subjects in our study, 'take-away' appeared to be contradictory or

inappropriate for a problem part of whose wording included 'How many more

must be added on to...?"

Most’children realized that the addition algor-
ithm was not appropriate, but they could not relate the additive nature
of the action in the problem to the subtraction algorithim. The solution
involved a choice strategy, and in this instance, a choice not to use
a learned or invented algorithm. Rather, the decision was made to revert to
an addition on or counting up strategy, which reflected the problem struc-
ture. The dataz in Table 4 indicate that about one-third of the almost 100
subjects made this choice.
Discussion

A consideration of children's number concepts cannot be divorced from
a consideration of the effect of instruction., The alternative counting stra-
tegies appear to be on the lower end of the scale along the dimension of
being influenced by instructioni They are related to the earlier invented
strategies involving use of counting sequences, either forward or backward.
Yet, the amplification and extension of the counting sequence strategies
to the alternative strategies often involved place value properties

which are learned outcomes of instruction. Knowledge of place value also

would appear to be a pre-requisite for invention of any algorithms as we

have defined them. But this brings us back to the very first discussions
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in this paper about the nature of inventive behavior., To think of invention
aé building out of nothing'is too narrow. Inventig% is a rearrangement of
elements into similar structures. For example, for most students, the
subtraction "buggy" algorithm is invented only after instruction on t#e
addition algorithm. In most cases, the elements learned in instruction
provide some limit to the range of invention.

The data we have presented also suggest that instruction has a bearing

upon changes in invented behavior. There was substantial change between

interviews, reflecting instruction that took place during that period of
time, yet there was almost no change over the summer when no dnstruction
had taken place. What change did take place over the summer was a slight
reversion back to earlier behavior.

The effect of instruction can also be observed by comparing our results
to those from a study by Collis and Romberg (1981). That study used almost

. ; I~
the same procedures as the ones we have. used, but found some strikingly

different results. Third grade students in Tasmania, Australia were indiéﬁ
vidually intefviewed on the same verbal problems with the same number size

b ! 9%\"‘&..‘-
as reported in this paper. Yet, only one- iitd used algorithmic procedures,

despite the fact that they had réggiveq fSFmal instruction on how to

3

compute. Unlike DMP, which was used in the study discussed in this paper,

-

their instruction on computation was taught only in a symbolic context,

free of application to "real" problems. This seems to indicate that
~ -y :
instruction has a major effect upon the range gf application of learned
v‘ -
strategies, and any chag?e pization of children's formal or invented

mathematics concepts and ‘procedutes needs to consider the role of instruction.
’ ~
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